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SUMM-ARY

Analytical and numerical methods are developed

that predict the flux of radiant energy.Item a 2family

of thin,, planar, conducting fin._. For a symmetrical

array of fin.% extending out J'rom a common edge,

conducting heat internally, and radiating diffusely,
a nonlinear integro-differential equation i._' derived

and soh'ed. Specie re._ults are gil,en .for para-

metric variations of conduction, emissidty, fin

geometry, and base temperature. The techniques
of calculation are _tudied with possible extensions
in. mind.

INTRODUCTION

The present paper has a dual ot)jective. First,

it will furnish predictions of the radiative inter-

change of heat between an assemblage of conduct-

ins, planar fins sul)jected to incident radiant

energy in a diatlwrmanous environment. Second,
it will develop a combined amdytical and numerical

attack on the type of integro-differential equation

associated with problems of this general clm racter.

The results represent one unit of a program of

radiative heat calculations now und.er way at the

Ames Research Center, NASA. Specific results,

of use in design studies, will be given for a par-

ti('tflar fanlily of fin orient _t ions. An attemt)t

will be made, at the stone time, to develop the
iterative mathem_tt, ieal methods in such a way

that extensions lo problems of similar type are

readily apparent. The numericM c_dcub_tions

were carried out on an IBM7 704 installation, and

the toted computing time for tlte results to be

shown required approximately one hour of m.aehine
time.

The design of space vehMes has focused alton-
tion on finned surfaces and their use as radiative

disposers of waste heat or as collectors of incident.

solar energy. In such a ease the nature of the

external environment precludes the need to con-

sider convective heat transport. A significant

physical idealization, and the one to be considered

here, arises when one represents tlte fins as a sym-

metrical array of 1)lanar surfaces ot" thin l)lates of

ttfiekness 2t, and with a common edge, see figure 1.

The length of the common edge is sufficiently

large in comparison with the length L of the plates

nonmd to this edge that the heat exdlange can 1)e

studied in the two-dimensiomd cross-plane, figure

l(b). The number of fins n, is an arl)itr,try
integer >1 'md the included angle 0-360°/n.

The pla.tes are alike in physical stru('ture with a

known coefticient of conductivity, the radialive

emission is diffuse, and a gTay-body type of

annlysis is employed; that, is, no dependence on

radiation wave length is included. The symmetry

of the configuration is retained and sul)eases or
prattled interest appear if it is assumed at. the

outset that a fixed temperature Tb is imposed
along the common axis (x 0, y 0) and auniform
distribution of incident diffuse radiat ion is assumed

to be directed into the open face of each of the

angular sectors. A brief derivation of the gov-

erning equations will be given in the following
section.

]n a recent paper, Sparrow, Gregg, Szel, and

Manes, rc[erence 1, have solved a special form

of Ibis problem. Specifically, they omit heat
conduction within the plates tllemsclves and

consider no external source field. In effect, they
study the case of infinite thermaI conductivity

and detcrnline the radiant interchange of energy
between the two plates of figure l(b) when surface

temperature is a constant. The integral equation

1
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(a) Three-dhnenMonM idealization.

_[GURE 1.--Arrungement_ of fins.

y

(b)

(b) Two-dimensional _ection.

*hal characterizes the transferal of energy wa_

q_laced in their anMyses by a finite differenee
:heme flint led, in l,nrn, to lhe sludy of simulta-

neous, linear, _dgebra.ie equations. To achieve a

reasonable degree of accuracy in the final solu-

lion il was necessary lo _se a rather l_trge number
of Mii'lllhaneous equ.dions. Even then, some

saerifiee in accuracy w_ts incurred in the immediate

neig]3mrlmod of the common edge (a singular

point in tl,c kernd of lhe integral equalim 0. We

shall here approach the general prot_lem from a

different point of view and use an ileralive

process that comprises a wedding of machine
calculation and the Liouville-Neumann melhod

or solving a Fredholm integral equation of the
second kimI. The amdysis of reference 1 is a

linear one; when conduction and variation in

plate temperatures are considered, nonline.u'ities

appear and. the analysis involves the solulion

of an imegro-differenlial equalion, but no unsur-
lllOIlll{allle difllcult,ies beseI the iterative medmd

of Mlack, and adequate eonvergenee of the

numeriofl process is retained.

In another paper, Eckert, lrvine, aml Sparrow,

reference 2, have d.erived the d.efining equations

under more general con<litions involving t.hcrmal

eonduclivily wilhin lhe fins and differing fin
geometry. Readers interested in extensions of

the theory to other eonfiguralion,_ shouht, refer

to lhat work. The restriction to thin planar

Iins was proposed in reference 2 J_s a reasonable

shnplifieation tlmt produces results of genera
interest and a.t the same lime lessens the mmflwr

of parmnelers affecling the predMions. TLa

techniques of c_dculation presented here can be

extemh,d, however, to apply to addiliomd cases.
The analytical section whMt l'ollows reviews,

at the outset, t,he derivation of lhe inlegral and
differenliaI equalions controlling t]w }te_tl ex-

change. We next show how some infonnaiiol_

regarding the solution can be achieved amdytieally.

The bulk of the contribution is, however, con-
lathed in the ileralive numerical calculations car-

ried out on an eleelronie eomlmter. The fired

results are graphical representations of lemper-

at, ure distribution along the fins, Ihe tJmrm,t]
current, flow wit]fin the fins, and the local net

heat-transfer function for a range of physical par-

ramelers includit,g die angle tT, the emissivity or
rcfleetivily of lhe l)lales, and thermal eon-

d.uelivity. The nomenelaiure follows generally

that used in /be references mentioned above, but

some differences do appear. The Table of Sym-

bols defines all imt)orlant wu'iables.

Readers with special interest in the physical

prediclions may wish to confine their atlenlion

to the baste assumptions, the defining equations,

and the subsequent presenlalion of results. A
final section has been added, however, in which

/he adapiation of ilw problent to digital tom-
puling machines is discussed in some delail.

This latter seelion is intemled to aid people eon-
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eerned with similar predictions. Finally, a more

general discussion of improvements in the con-

vergence of numerical ite,'alions is included.

TABLE OF IMPORTANT SYMBOLS

a cos 0

B@), B(y) combined radiative flux (emilted

1)lus reflected) from x or ?/

(cnl/em _ see)
B

dimensionless combined flux, ¢rTo_

radiation ftmelion defined in equa-

lion (20)

uniform ineiden! radiation flux from

external source (cal/cm _ see)

function inlroduced in equation

(l S't>)
incident radiant flux at .*: (ed/cm 2

sec)

thermal eonductivil:¢
kernel ru,wfion in[rodueed in equ'>

tion (9a)

fill length
(,

dimensionless flux, crT_/

,rL'To
conduction parameter kt

local thermal current inside fin

(eal/see)

see equation (11)

local heat flux (cal/em _ see)

see equation (12)

inlegraled heal flux (eal/em see)

see equation (13)
dislanee between [we points
areas on two fins

half-thickness or fin

absolule tempera{ ure, local

temperature at .r y 0
T

dimensionless temperalure 7'_

nonorlhogonal eoordimtles along

eoordinale along common axis of
fills

gray-body absorplivity, I - p

gray-body emissivity
x !t

dimensionless eoordinates I,'T,

angle between adjacent phttes

gray-body reflee!ivity, 1-- a

B*((), B* (,7)

B,*(_)

e

a(_)

H(.,')

k

K(_, ,7)

L

.\\

q(:r)

q(.,.)
0"(_)
_(,)
_*(_)
P

Sx, S,

t

T(._)
To

T*(_)

a', ?l

z

og

f;, ,.

0

P

ANALYSIS

GOVERNING EQUATIONS

Figure 2 shows tile idealizalion of the assumed
geometry. The symmelry of the assumptions

permils one to eonsider only two plates of thickness

2t, of length L and infinite exlent normal 1o the

plane of the paper, and forming tile angle 0 Itl their

common edge. The nonorlhogonal eoordimtle

axes x 'rod y extend ahmg the (live(,lion of tile

plates and for small values of t/L may be assumed
either to eoincide with lhe plnte surfaces or lo lie

along the center lines. Let dS_ and <lS_ be repre-
sentative area differentials on each surface, and

,tenote by fl(.r) tile combined radiation flux

(energy per unit time and area) at Ill(, point x.

xle /

FIGYRE 2.--Fin pair with incident radiation.

Thus, B(.r) embraces both emitted and reflected

ener_-, and the emission is ndapted h'om the
Stefan-Boltzmann law in the form eaT _, where

is surface gray-body emissivity and o- is the
Stefan-Boltzmatm eonstan{. Incident energy per

unit lime and area a! z is denoted by H(.r) so

that reflected energy flux is pH(x)-(1--oe)I/(a'),

where a_ is absorptivity. Combined flux then
becomes

B (x) -----taT(x)+@ (1 --a)H(x) (1)

From an exlernal source we assume a diffuse

flow of energy through lhe nrea eonneeling the

fin lips. The magnitude of lhe flux is e.
The incident energy flux at. x is eomposed of

two paris: first, the flux arriving rronI all post-
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tions y on lhe opposing plate; second, tile flux

from lhe external source. Combining these lwo

effects, one has

H(x) .fry B(?t)dFx-_+eF_-se (2)

where dF,- v is the angle factor under which dS_

is seen from % and Fx-se is lhe angle factor under
which tile surface S_ between the fin tips is seen
from x,

In _t two-dimensional configuration the angle

factor of an infinitesimal area of unit width,

dS2=(1)(ds.a), as viewed from a point Px, is

())-_ts_a dr: (3)

where, as in figure 3, r is the dis,*anee P_Pa and

/_ Normol tO

lVmVRE 3.--Sketch showing variables in two-dimensional

angle fitetor.

a is the hmglh or a perpendicular dropped from

P., to the surface normal at Pt. Thus

(lF_-v_l 2 d y cos O--x dy
dy (x:q-y2--gxy cos 0) '72

(I --a, _) xydy
2 (x 2q-y_-- 2axy) el'.

(4)

where a=eos 0. For flux at x produced by the

uniform incident energy, similar considerations

We

F e [ L_-- a" 7e __s= 2 1 (ffl+x___2_tLx),., ]
(5)

Equations (1), (2), (4), and (5)yiehl lhe inlegral
equation for B(x) :

B(x) =_T(,,.) _

0-_)(I-.,:) (_ :,vdv
-t z 30 P(Y) (x"+y_26;:y) _'"

-]-e(_2_)El L a-x 7(L,+x__2aLx),/_l (6)

The differential equalion governing tile con-

duelion within lhe fin balances lhe energy trans-
port, as given by Fourier's law, and the radiation

flux from tile exterior surfaces. Applying this
equality to a two-dimensional strip of unit widlh,

one gels

{-lxd(kt dT_= B(x)-- lI(X)dx/ (7)

In addition to equalions (6) and (7), lhe following

boundary eondilions are specified

T=To at, X=0 _1

_(,/r_ _(L)-n(/.)a_.=L j¢ (s).... \&/= ,

It. is eonvenienl Io rewrite the govenfing equa-

tions as they appear in a normalized system of

variables (see Table ()f ,qymbols). One then gets

B*(,) = eT* (()'q-(1 -- °0 _\; [12 (1 q-('-'-- 2el) ,/2]

(1--a)(1--o 2) ["
4 2 do B*(_)K($, v)du (9a)

where

K(_, ,1) = (_ + na - 2aOj)a/_

d_-T * .\:_
[eT*(O'--aB*(O] (9b)

d__ (1- _)

wilh boundary conditions

T* (0) = 1 1

)dT*(1) .V# [B*(1)--H*(1)]
d_ L (9e)

L
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Tile following l'elalions also apply

B*(_)--H*(_) = _T*(_)_--o_H*(_)

_e T*(_ )4--ee B*(g_)
1-- oe

(9d)

TRANSFER FUNCTIONS

A slraightfl)rward sohtlion of equations (9)
involves tile determination of tim two functions

B*(_) and T*(_) by solving the integral equation

(9a) and the differential equalion (9b). F,'om

lifts analysis, which is obviously a nonlinear one,

follow prediclions of local temperature, local

eun'ent flow widfin the fins, local heat flux fi'om

the surfaces, and lolal Iieq! flux. The results

to be given laler will be expressed in terms of

starred values defined by lhe following relalion :

Tempera{ tire, °K

Physical variation: T= T(x) ]

T(Lx/L) _ (10)Pr(,dieted varialion: T*(_)-- _-

Local lhermal current inside fin teal/see)

Physical variation:

Predicted variation :

Local heat flux teal/end see)

Physical varialion:

Predi('led variation:

lntegvaled heat flux teal/era see)

2kt dT(x) t

qO') --37--
(11)

q*(() q(L:r/L) dT*(_)/,l_

-_-_- _ J

%

Q(x) = B (,) -- H(x) =_ _T(x)_-- _H(x) I

_,(. Q(L_r/L) rPT*(_)/d_" _ (12)

2Physical vari_tiion: __= Q(x)dx

_. (r. O[L@/L)]dx 1 FdT*(1)
Predicted variation: _f=],_ _ =_L ,t_

(13)

ANALYTIC PROCEDURES

A new independent variable u(_) where

u(_) = _.
dT*(_)

(14)

is next to be introduced in equalions (9). The

analysis is thus east in a form where the unknmvn
is a constant factor limes lhe local thermal

cm'renl. From the first boundary condition of

equation (9e)

T* (_) : 1@ .\ _J0 u (_) d_, (15)

Equation (9|)) then becomes

o_ .... du(_)_ _T*(_) 4
1--a B _._)=--_-1- ] _ (16)

from which equation (9a) can be rewritten as an

integTo-(tifferen lial equalion

{E 2du (4) 1 + N_ u (_,) d_ 1 .V_

"Jr (l--a)(1--a2)2 J0_'(du",dr/ 1 --_' ([ 1-;_'_\`

N[ (17a)

with the boundary condition

" N (17b)

For purposes of discussion, it is also convenient

to rewrite equalion (17a) in the alternative form

du(()--Fa_---L (_) (1--0")2 Jo_'G(')r((_'n)dn_

_{(1 2 ._ul
-_)(1-a2) I_ du(n)

1£(4, (18a)



6 TECHNICAL REPORT R 116 XATIONAL AERON'AUTICS AND SPACE ADMINISTRATION

wilero

Befol'e proceeding_" to a discussion of general

cases, two imnlediltte simplifications shouhl be

noted ill the governing equations. The first of
tllese occurs when no fixed value of To is imposed

and Ihe entire configuration is nlh>wed to seek tile

equilil),'ium slale consistent with the incoming
radiation from tile external source; the second

occurs when eonducliviiy k t>ecomes very large
and the parameter :\r consequently approaches

zero. These special cases will be treaied nexl.

In tills case, total equilibrium call be achieved

by imposing loc.ll equilibrium conditions. Thus,
we set

B*(_ ) -- [1" (_) -- _T* (_) _--cd l*(_ ) -- 0

and under these conditions T*(_)--I where tile

reference temperature Tb is yet to be determined.

If one then returns directly to equalion (6), tile

resulting equal ion is

/;J (_)=--72 --(lq__= 2<t_)l!2j

_2 & B*(n)K(_,_)dn

Equation (21) implies that under proper normal-

izalion of tile dependeni variable the case of

infinite conductivity and uniform incideilt radia-

lion can be re<hlced Io a study of radiative

iransfi.r f'or which no external source appears,

conduelion is disregnMed, and tile lemper, ture

of tile fin is hehl fixed. The probMn then re-

yet'is lo the type studied in tile paper (ff Sparrclw

and eoIhlt)orillors. Solutions of' eqlialion (21), for

all exlensive rnnge of' tile paranleters a and a

cos 0, will tie given biter.

Tile integro-differenlial equation (1Sa) as well as

equations (ga) and (21) are directly associaied

with tlte classical Fredhohn integral equatM1 or
iite _econd kind

g(_)----f(_) -l-X g(_7)K(_,_7)d, (22)

where 0<X--(1--o_) (1--a2)/2<1/2. Olin might

reasonably expect, therefore, success in achieving

a series expansion in powers of X, lhe so-called

Limlville-Neumann expansion or the solution.

This idea controls the work to be developed hller.

It is also imporlant to note tilt, nature o[" tile

kernel fllnctlon [<l.'(_, rt). Figure 4 shows a skeleh

and

Equilibrium conditions thus yield

ae-- (reT 4

and the uniform equilibrium temperature is

/eNll i/o[Xlt i

"r":L;)

tile sohition is B*(_)=[[*(_) .\G=const.

(19)

12

Consider next the infinite conduction case, _\_=

O. Again, from equations (Oh) and (9c), T*(_)= 1

wliere T_ has nn assi_wd wdue different from the

parliculilr equilibrium wdue of equation (19).

From either equation (17) or (,01l) it ('all t)o shown
llult tile transl'ormation

B,*(_)= B*(t)-- .\;
___.\_ (20)

reduces lhe integral equation to the form

n,@(_) = ! -} (1 --0_) _1 -- ag) fl

2 d,, B'*(_)K(t"_)d'7
(21)

XI

FIGURE -I. -Kernel function in radi,ttion integral equation.
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of K(_, _). The function is s3nnmetric, is never

negative, and varies inversely with distance from

the origin along all rays through the origin except.

in the coordinate planes _=0 and n=0. The

function is not bounded tbroughout the entire

region of integration but, rather, increases in-

definitely as one approaches the origin along an

arbitrary line $/_ = const. This means that some

care must be exercised in using theorems drawn

from the theory of integral equations. In this

particular case, however, the kernel is integrable

and no special difficulty is encountered in extend-

ing the analysis. The integral of the kernel is,

in fact, a monotonic decreasing function in the
variable

< 1° < re' tc(_'n)dn =Y-!-_ [1+- (t +(Z--2a_)a'--_i/J__

(23)

The geometry of the problem indicates in-

tuitively tha_ some simplification should be

possible in estimating conditions at the inner
corner of the plates since the extent of the fins

becomes effectively infinite. A more precise

development of this observation proceeds as

follows. In equation (22) set _/_ = r. One

then gets

g(_)=J(_)+ x (1+_ 2a,.)_/_

Passing to the limit as ( --> 0, one has

" g(O)drate)=/(0) +x (1 +,.__2a,)_/,

=/(0) 4 xg(0)
1--a

and, therefore

f(O)
g(0) =1-- X/(1--a,)

y(o) (24)
-- 1-- (1-- o+)(1 +a)/2

This fix on the corner value of the unknow-n is of

considerable value in numerical calculations since,

in spite of the fact that the magnitude of .q(0)

is readily determined, a singularity in @/d_
609884--61--2

exists at the corner and affects any techniques
based on finite difference methods.

In application to tile general equation (18a),

it follows that the corner wdue of d_L/d_ is

du (0) _ (E -- aN_) (1 -- a) (25)
(tf 1 Ca--at1--@

since, from equation (1Sh), G(0)=e--o_N,.

It is also possiblc to show that the power series

resulting from an iterative expansion of equation

(18a) must also converge. If the bracketed

term on the right is denoted F((), the iterative
expansion becomes

du(_)=F(_)__ (1--a)(l a 2) (t F(5)K(_, (,)d(_
d_ 2 -- ' ,,o

+ ____2[ (1 -- c_)2-(1-- a2).] '+f011_'(_, _0

.+-_"K(5, _2)...,_t... K(_,-t, _+)F(_)d_,... d_

(26)

The reasoning whereby the series convergence is
demonstrated may be shown by considering the

ease in which he.R. energy is to be radiated away

from the configuration; that is, when Tb > TE.
It is obvious then that the thermal current must

flow outward along the fin and that u(() =

[dT*(_)/d_]/:\_ < O. Thus

+ ( [1 + i¥.fo_ u(_,)d_,'] _

--_ A,)<G(+)<+ (1--_'A r ) (27)

and since, from equation (19),

<++.¥o(T_y _ ,., (2s)
......................+ =\_] =-_,

equation (27) yields

+[T*_(1) T_*_lgG(_)<dT*_(O)--Ts ¢1 (29)

The function of G(_) is therefore a positive bounded

function, and the mag'nitude of the function F(_)

in equation (26) is also lcss than some finite

constant R since the hlte_ate(t kernel is bounded.

Finally, repeated use of equation (23) shows that
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the infinite seriesmust converge 1o an absolute
value no[ in excess of

_, (l--a 1 la) R
11

-2- (1-_) (1+a)

(30)

This relation _ves the exact, wdue of the local

heat flux and displays no dependence on the

conductivity of the material. Since ,_B(0)

=_(_T0_-(1-a)Q(0), the local value of the

incident and the emitted energT fluxes are given,

respect ively, by

The am,lylieal considerations have thus estab-
lished the exact value of du(O)/d( in general or,

in olher lerms, lhe corner value of the surface

heal flux per uni! area. ll has also been possible
lo show thai when lhe function F(_) of equation

(26) is knmvn explMlly, a converging iteralive

solution is possible. In lhe case of infinite con-

duction, where the problem becomes one of

solving lhe lateral equation (21), the numerical
calculations follow precisely the steps prescribed

in Ihe series development. When finite conduc-

lion occurs, F(_) in equalion (26) is a functional

of u(() and the nmnerical calculations must
include an ileralive evaluation of F(_). In the

final section of this paper the programming of

Ibis calculation will be discussed.

It should be remnrked that a purely analytical

atl ark on the iteralive process becomes excessively

complex even in lhe special case characterized

by equation (21). The singular nature of the
kernel at (=r>-O, which is a resull of the corner

between adjqeent fins, is l[|e principal source of

the difficully and il qppears ihal lhe general

solution of equation (_'21) has the f(>rm

B,*(0=_ a,_"+5-2 52 b._ _In'
n r ,_

The nature of this solution accounts for the singu-

lar behavior of dB2*/d( at the corner. A similar

expansion should apply locally for tile nonlinear
case with conductivity.

PRESENTATION OF RESULTS

Before presenting the numerical predictions

of the general solutions, the analytic result of

equation (25) will be recast in more physically

meaningful terms. From equations (12) and

(14)

O(__ 1 d_'T*(O)_du(O)

and from equnlion (25)

(eaTd-c_e) sin = 0/2
Q(0) =sin-_ 0/2+a COS2 0/2

(31)

iI._,, eaTo _ ('os 2 0/2+e sin-" 0/2

Brff, eo-Tb4@(1--o0e sin e 0/2
'_) = _ _ _o_ 0_T2 (32b)

When 0 0, tile contribution from the external

source necessarily vanishes and tile heat flux

vanishes since the incident and emitted energy

arc equal in magnitude; when 0=_r, the incident

energy is derived solely frmn ihe external source.

Of speci,l inleres[ arc lhe variations of these
functions in the ease of small t)ut nonvanishing

values of lhe included angle 0. One would anti-

eilmte that if lhe included angle diminished, and

if the absorption and emission eoeflieients were

equal, the emission wouht _lpproach in the limit

t)lack body radialion. The quantitative expres-
sion of this fact folh)ws from equation (32b)

since

B(0) e_e_ °T_4 _ 1--_c_ 4\02(e -_-o_°'Tb4) (33)

applies under conditions for which 0",!4<<a.

Figure 5 shows the dependence of Q(O)/(aT_*

--e) on 0 and on _(=_).
In all of the following resuhs the relations

o_--E_-l--p are assumed to hold. Since the case

....t 1...........
_+ I 1 I ,,7 / l _5_=______

1 1

:LI/ i
0 30 60 90 120 150 180

8

I_C['_E 5.--IIeat flux at _=0, with dependence on _ and 0.
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in which the material surface is heht at constant

temperalure over the entire length is of lmrtie-

ul'n" in/eresI, an extensive range of solutions is

shown in figure 6. Tile angle 0 tms been allowed
to increase from 10 ° to 135 ° in ineremenls not

gTealer than l0 °. These curves extend the calm>
]at ions of reference 1 and, as rem'_rked previ-

ously, may t>e interpreted so as Io yieht local heat
flux either witll or without an extermd source of

radiation. Tile or(limtte scale is the reduced heal

flux function Q*(()/e(l--_\_) or (]*(()/(l--p)

(1-:V_). This form of plotting spreads the

curves and makes lhem easier to read bul, even

when ;\re=o, actual magniludes of the heat fluxes

can be compared only after multiplication by the

refleetivity factor 1--p. T|le singularity in the

gradient of O*(_) is not readily apparent front the

graphs allhough the ma_mailude of tim gT,ulienl_

does increase notal)13: as reflectivity increases
(emission decreases).

:By virtue of the symmetry that was imposetl

originally in tim problem, it is obvious that ttte
results of figure 6 can be applied directly to two-

dimensional eonfigunltions, such as those shown

in figure 72

The gTaphs of figure S were ('nl('ul.tled in order
h) predicl the effect of eonttu('livity on tile hen[

flux, tempera!ure, trod therln,d current. In ,11 of

these eases lhe exlcl'lml radialion field was deleled,

thus .a,_:0. Although olher soluiitms were

ealeulatt,d, the angle O h,ls l)een restricted 1o

lhree l ypie'd eases, 30 °, 60 °, and 90 °. When _\r

: 0 the temperature (lislri|)ulion is uniform, in

eonfornlity with infinite eondluqivily, but tile
thermal current is finite and not zero. Its value

--2kt dT(.t)/d.r, as given t)y Fourier's h/w, is an

indeterminate form but the current must appear

in order to supporl the (tislribulion of local heat
flux, The numerical solulitm was ealeuhtted

I,hrouglt the use of !he inttependent variable utah)
which was directly prol)ortional to lhetlnal

1A study of notched r_Mialors with collsl:tllt, wall tvlllllOra|tlres has been

given by L. F. Daws in a paper enlitled Tile Emissivity era groove, British

aour. App. Phys., vol. 5, 3.lay 1954, pp. 192--I,_7. This report, which came

to the atlthors' at[i!lllioll (hiring the proofreading of the present palu'r, tabu-

lares results for _=15 °, 30 °, 60% and _=0A;-t. Daws also gave an explicit

expression for the combined [lllx at the corner.

1.0

.9

.8

.7

.6

,4

.5

.2

_T •l 1
+ ¢

I

___ 0=50°

, /
//

•2 .4 .6

j ,
//

//

,8 1.0 0 .2 .4 .6 .8 I.() 0 .2 .4 .6

:FIavaE 6.--(a)

FICURE 6.---Local heat flux for const.ant temperature, with dependence on o (= 1--_) and 0.

1
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////
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e

0

e

0

Fmc_E 7.--Wedge-shaped cavities in constant-

temperature material,

current and the mathematical indeterminacy did
not arise h_ the calculations.

Figure 9 shows the integrated heat flux (see

eqs. (13)) eon'esponding to the results of figure 6.

These predictions thus apply to the case of uniform
surface temperature. It can be shown directly
that the ordinates of the curves at _=1 are given

by the expression

-] o (34)
EL (I_-A_)..I. =1=sin

It is of some interest, finally, to depart from

consideration of the physical predictions and men-

lion an interplay between pure analysis and
machine ealcuhttions that arises in t]fis particular

problem. To illus{rale this, consider once more

the formal iterat ire solution of equalion (21). The

complexity of the analysis can be reduced con-
siderably if, following each new prediction, the

unknown funOion is approximated by a polyno-

mial of increasing order.

Suppose in equation (21), the function B_*(()
is a constant C. Then

Agreement at _--0 demands that

B,,(o)::ro[t (1--@(l+a)] '2

If the constant is again forced to give a_'ecmcnt

at _=1, one gels

B,*(I): C,:EI (12 a) (I--_)]-'

A ]inear approximalion can titus be written in lhe
form

B,*(_) = Co+ (G- Co)_

and a new prediction calculated. Such a calcula-

tion _ves

B ,(_)=I+ (12a) CoEI+ a--_ ,/_]• - (1 -- 2a_ +_2)

q-_ (C:- Co) (1 -- a) (1 -- a2)
2

1 [" 2(d--l--a_(l--a?) L(1-2@+_2) '/_ t-a]

qln [(1--a_) q- (1--2a_-l-_2)'/=]_(I--a) } (35)
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t.0
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0 2 4 .6 .8 1.0

.64
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,48 -- //

_ "----..,_,._, _ "--"-'"- (a)

0 .2 .4 .6 .8 1.0 0 .I .2 .3 .4 .5 .6 7 .8 .9

FI_tTRS 8.--(a).

FIGURE 8.--Temperature, thermal current, and temperature distributions in conducting p]anar fins; t/L 0.05.
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FIGUIIE 8. (h) Contimmd
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t5 Q.
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FI(]L-I_.E 8. (i) Concluded.
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Fmv_: 9. --Integrated twat flux for constant temperature,

with depimdenee on _ and 0.

In order to eontimw the process, w_lues at _--0,

0.5, and 1 can be determined and B_*(_) approxi-

mated by a parabola passing through the known
or(timbres.

The principal idea being developed here is that

analytical procedures like the one above can be
studied experimentally in combination with nu-

merical results and the range or validity of the

approximate predictions then determined. Figure

10 shows a comparison between exact results and

predielions based on equation (35) for the special
case in which 0-90 ° . Considering the roughness

and simt)liciiy of the approximalions used, the

agreement is surprisingly good. At 0 10 ° _he

agreement is wholly inadequate })ut relations like

equation (35) may serve a useful purpose when

some sacrifice in accuracy is acceptable ,rod the

range of the parameters is limited.
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t.0

.9
f

.5

I

Numerical solution

------ Eq.(35)

o 2 .4 .6 ,8 1.0

FmVnE 10. Compari._on between exact and approximate
prediction of local heat flux, 0 90%

NUMERICAL .METHODS

The discussion in lhis section concerns tlie

methods and analysis used to solve equation (17a)

for the _ven boundary conditions by means of a

digital computing machine. Its inclusion in a

report of this ldnd llas been brought al)out by lhe
develol)ment of computer "languages (sue]l as

FORTRAN), by means of wliich tile engineer can
communicate directly with tile machine. The

experience of the authors has been tllat an under-

standing of sucll languages eonsiderat)ly affects the

kind of theoretical analysis the engineer directs

toward tile solution of a specific problem; turning

it toward points t]tat arise principally because a
maetfine is to be used, and away from points

(wliich, without the maclline, migIit liave con-

sumed large anounls of time) lliat are no longer

essential. Their experience has also been ttiat

such knowledge is extremel3r use[ill i,I tile formula-

lion of the problem, permitting tlie engineer to

reeo_mfize at that eritieal singe jusb what assump-

tions and compromises are and are not. really
neeessary in thai these decisions affect, machine

running time by orders of inaptitude. 2

The numerical study of the present problem

requires special attention in two areas, one, the

The engineer can at least be aware of the approximate minimum lime a
really optimum programming of his problem requires. This is based largely
on tile number of independent variables in his lmrlleuhlr problem and tile

range of p:mm_eters tie wishes to cover. Ilow dose lie ehooses to approach
this minimum depends upon his breadth of interest and his particular
economy.

numerical treatment of the singularity in the

kernel, and tile other, the production of a program

I hat produces a solut ion to tile int egrn-differential

equation in a short lime. The hiller depends, of

course, on the number of runs anticipated. In

this problem, for each 0 there are five parameters

N¢, ._, t/L, a, and e, "rod a very modest coverage

of them all demands a large number of individual
solutions. The manner in wlfieh tllese difi%ullies

were treated will now be considered.

The dimeully itl the singularity (_=,1--0 in eq.

(9)) was largely overcome when the exact value of

tim unknoam was diseovered there, see equation

(25). The essentials of tlie remaining analysis are
as follows.

Equation (18a) was written in t lie ro,.m

d_0=a(0__ (1 --a) (I--_'0 (1__ 2 3o A(n)K(_, n)dn

(36)

,, ,h,(,7) O(,7)
.1(,7)= _ 1-_

and G(0 is given by equation (1Sb). The length

front 0 to 1 was then divided into (3[--1) equally

spaced intervals. In each interval A(n) was re-

placed by a sh'aight line. Ttms, if AN=A[(N--
1)/(.l/-- 1)]

I(0--£' A(,)K(_, n)d,

_ {[x- (m-- _),TIA.,.
-- _\'= 1 d,V

+[(AI--1)_-- N+I]A,v+_) IK'(_, n)d_ (37)

The integrals fK(_, n)dn and fnK(_, n)dn are

easily evaluated. Tile eoefl]eient for the known

A,=A(0) was determined by calculating the in-

totals for nonzero (, then setting n=0 and then

letting _go to zero. This simple approxinmtion
resulted in terms wllieh presented no numerical

difl%ulties in any region. The estimated error,

based on runs with differing 3[, is less than can be

shown on any of the graplls in this paper.

MACHINE TIME

The decision was made at, tile outset to use a

method of iteration to attack the present problem.
This choiee was made for a variety of reasons. In

where
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tile first place an analysis (oqs. (26) and the follow-

ing) had already shown such a melhod (,onverges.

Secondly, iterative methods are easy to coati'el.

They can be terminated quMdy if lhey ;are diverg-

ing, and, if their convergence is slow, methods can

be broughl to bear thai will often gTeatlv hasten

il. Finally, hi l|te present ease, rm iterative pro-

gTan] is quile easy to wriie and, therefore, eom-
paralively easy to puI into produeiion withouI

excessive delay.

Having chosen lhe ilel'ative technique, and hav-

ing in mind a large numl)er of cases to st udy, it was

considered necessary to estimate the minimum fea-

sible time required for each new itel'alive sohltion.
The crux of the problem here is the time required

to evaluate the integral f(_) given by equation

(37). lr J(_) is cah'uhtted al lhe same points as

*i(n), we can write

3I

[j=I( J--l'_"_ _-_ Av[lsv, a=l,2, . . .. M
k.31" 1/= .\-=l ' "' "

(as)

The time required io ealcuhtle lhe 3[ differen{

vahles of 1, is given by lhe product 3[eXrXla where

is the unil machine time (12X10 -_ see re, al,
IBM 704) and r is lhe number of machine units re-

quired for calculating one AN[lax and addhlg it

to the olhers, lleration times are clearly mini-

mized ir/5.v is calculated only once (several hun-

dred machine mills are required to find each f/J\)

and stored in the n]achil-le for subsequent, use. a
The wllue of r for an IBM 704 is then about 35

and the time required to calculate lhe set of lfs for

each i/e,'alive solution is about 420X.1FXIO -_

seconds. Of eoume, the complete iteration de-

mands :tdditional ealeuhtliOllS but they involve

only one indelmndetH variable and are, therefore,

proportional to .1/', not M 2 (see t,ble 1). Allowing

Table 1. F.stimates of minimum times involw_d for certain
operations on an IBM 704 (assuming (';',,_(_) and C,l(_, x)
have been properly weighted arid stored). Both _ and
x lake 3l values in the interval 0 to 1.

' go( _) f (_)d_'380 ,1IX 10 " seconds

_ Ou[_) (_)d(, 0<x<1_1000 3IX secondsf 10-"
}

1 G_(_, x)0 <x < 1_420 312)/, 10 -_ second_(_),t_,,
}

s This requires 3I _-words in storage but offers no problem if 3f<51 even
for a machine limited to an 8000 word capacity.

that they doul)le the above figure, lhe tolal lilac
h)r one iteration amounts lo armmd 840)<3I _ mi-

croseconds, or al)ou| 2.2 seeol|ds for 31 51, the

value generally used in Ibis report.

In act/tal pr|telice slightly over 300 different

cases were run, abottl a quarler or which arc shown

ill this report. Tile production time was jusl under
2 houl's. 4 About nine itel'ations were required for

the average produclion case _ w]|ich ,eeounls for

85 percent of lhe produ('tion lime on the basis o1'
the 2.2-second estinlale. Tile rest or the time is

roughly accounted for by lhe necessary data inpul

and oulput and the evaluation of the II+x eitch

lime 0 was changed.

TItE ITERATIVE PROCEDURE

In carrying out a numerical ite,'alion some lest
musl be provided in decide when the iterations can

be lermil|aled, hi this ret)ort a solution is assumed

to have t)een arrived at when the inlegral ()f the
al)solute vah|e of tile difference betweelt two sue-

cessive iterative sohllions drops below a eerlain
limit. In particular, when

\.¢t_]j \.,'L_/S+l ,

5f

=_2, WT"(.V)JDU1 (.V)--DU2(.V)I <O.OO01 (39)
t

whel'c IVT(,V) is in integration w<,ight (e.g.,

:sh/3 times 1, 4, 2, 4, . .., 2, 4, 1 ir £impson's

rule is used) and DUI (N-) and DU2(N) are arrays

hohling two eonseculive ilecalion.q. The first

ilerative teelmiquc used is outlbled below:

1. Inpui general data.

2. Prepare arrays for simple il_l%_als.
:3. Input 0.

4. Cah'ulale and array the kernel tC(_, v) in

equation (36).

5. Input _, =V,., t/L, and ,q and evaluate perma-
nent constants.

6. Caleulale right-ha|M side of equation (1Sa),

assuming G and ¢tu/d_ are the constants

given by equalions (25) and (1Sb) with

(=0. Array the results in DUI(N),
1 <N< 3/-.

7. Illput .\'_.

Tot:fl time, including compiling and eheeknul, was 3.61 hours,

This has been considerably improved for future work. Eight fa_,_,s that

took 208 ih'ra{ions ",,,'ere rerlln using a method for accelerating convergence

and the number was reduced to 60. This method is discussed in the following
sections,
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S. ('ah,uhde tile right-hand side of equation

(181)) using DUI (_V). Array the result

in GIN).

9. Calculate d_e right-hand side of equation

(18a) using tile wdues now in DUI IN)

nnd G(.V). Array in DU'2(N).

10. Find [D_l--D[2ad_. Store result in
, 0

array E[mo_¢ (I).
11. If EI{[{on (1)_<0.0001 take instru('tion 1,3,

otherwise take 12.

12. Replace DUI IN) with DU2(,\ r) and return

1o8.

1,3. Oulput dala and relurn to,3, 5, or 7.

The procedure just prcsenled was satisfa(qory

for the sludy at variations or the remaining

parameters, .\%, _, t/'L, and 0. A typical plot or

the E,_Rot_ term against the number of iterations

is shown in figure 11.

.O8

E

to .04

I)

5

Z Error (I)

1 ,089455

2 .015641 --

3 .003080

4 .000664

5 .O00i 28 _

6 .000028

4 5 6

Number of iferotions, 2-

I2IGCRE ll.--Typical variation of error t('rm wittl number

of iterations.

A _4ETHOD FOR ACCELERATING CONVERGENCE

Although figure 11 was I.vpical of mosl cases,

two regions of parametric comhimtlions converge

very slowly using the above method. Both occur
for nil wllues of IlL considered. One occurs when

.\_, _, ,rod 0 take their largest values and the olher,
when ¢ and 0 are sma]l throughout the entire

range Iff .\_.
el'lea the successful application (ff n converging

iteration scheme depends upon tile first choice

of the dependent w_rial)le. A poor [h'sl choice

can resull in an inloleral)ly slow rale. This is

precisely what happened in tile preach! slu(ly

when t/L, .\_, ¢, and 0 were equal t() 0.05, 2, 0.9,

and 120 °, respeelively. Tim circled dots in figure
12 show tile variation of the _l_no_ term for 30

iterations. Obviously the convergence rale is

unaceel)table. Detailed inspections or lhe siluq-

lion are presented hi figures 13 and 14. Figure 13
shows tile initial choice of du,/d( and tile first five

successive iterations. Figure 14 shows the value

of du/d_ at _=1 for the first 20 iterations. ILl

both eases the final wdue is given for compariso_

Fortunately, the ldnd or convergence ilhtstraled
in these sket('hes can lie improved ren_arkably by

means of methods developed for lhal tmrpose

(e.g., see rel's..3, 4, ,5, 6). All or lhe referenced
methods are |)ased on the assumption taut at se-

quence of terms in an iteration contain information

.8 0:120 ° //L :!05

-- -Nc: 2 ......

o

#_ :

I o _ ...Accelerated convergence

0 8 16 24 52

Number of [terolions, 17

]:U;_-RE 12. Slowly converging iteraliou series "rod im-

provement brought about 1)2" a m(,thod for aceeh'r:ding

C Oil vergen ce.

d/J

I
.Isl iterofion _.___.____.

.8 '_ --

J ,,First guess

L ---__ .....

0 .2 .4 .6 .8 1.0

FI(;VRE 13.--First few iteration distributions of rlu/de_

against ( for slowly converging case.
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i O

.8 !--

-i

0

0

O 0

Final value-_.

0 0

) 0 I)

8 16
Number of iterations

o 0

0 (I

24

lVmVRE 14. -Variation of end points, first few of which arc

shown in figure 13, for :20 iteraiions.

regarding lheir final value, information which is

lost, if only the hlst term is used for each succes-

sive step. To apl)l,v lhese methods a few consecu-
tive iterative solutions are retained il,lhe machine

memory and cvcntttally called upon to form the

fin.tl estimate or to find an improvett Sial'ling
value for a new series of iterations. Shmlks (ref.

3) has developed a melhod for u_ing any number
of ilerative soluti<ms. In this report only three
are llsed.

We can describe the method used herein gee-

metrically wilh the aid of figure 15. Consider

Rectongular

hyperbola through
.-Ist two points

. ;_-5.-

\
\
\
\
\

\
\

x

\ /
Asymptotes

t--'- +=- '-q
FIGURE 15. Rectangular hyperbolas mentioned in dis-

CllSsion.

three successive points yl, 712, Ya in any itel'ative

scheme and plot them againsl, say, x with unit

spacing. Pass a rectangular hyperl)ola ihpough
Ill(, first, bye, and another with tile ,_ame y a.eymp-

tote through the second hvo, but, for generality,

wilh an a" asymptote displ.lced by D. Tttus

(X-.rl)(Y-!h)=C

(X xa) (Y--ga) =c
a n d

(X+ D .r_)(Y--y_)-c*

(X+D za)(Y-y:,)=c*

are the equ,tlions which must be satisfied. The
difference between tile two eqlmtions in each case 6

gives, for a fixed D, two equal ions for the unkllomls

X and I'. Solving for Y and using the relations

3"l--a'a:.Ta--ara= 1, one finds

v >'=,-(2-Dt (t_w-v:,'}-' (40)
Y2-- Ya \ Y, -- Y'-/

Tile variable Yis a point on the curve 1}ml will

form the starting distribulion for the next ilera-

lion. Its dislanee lrom the last approximalion

divided by the dishlnee between lhe last two

approximations, (Y--ya)/(!l.,--Ya), is itself ,_ ree-

tangula r hyperlmla when considered as a rlmcti,,.

of lhe variable (y_--ga)/(?/2 Ya)- Tiffs is illus-

tl'aled ill figure 16.

r2-z3 /

=O

.O:2 ( Y, - Y2 "_

" \Yz-Y3 1

[ ,o,/
Fret:IcE 16. Illustration of equation (.3t), formula used to

acceh, rate convergence,

Notice that, by considering only the differences, the finaI formula will
he independent of e and c*. Notice also that tile skelch reprer, ents .'i very
simplified picture of what can happen. Both branches of both hyl_,rbolas
(whidi can tie in any quadrant since e and c* can be eilhcr d- or --) are often
involved. The latter is the ease, for example, when applying the results to
the points in figure 14.
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We turn now to the choice of D. If three poinis

are ac{ual|y spaced as shown in figure 15, a b¢st

generally accephd)le D is not resolved. Values of
D between 0 and 1.5, say, yield equations that

could give the proper limiting Y. I1", on tilt other

hand, the first and third [minis are nearly equal

and the second is considerably different from them,

as is the case in figure 14, the best D for our pur-

poses is readily determined. In sueh cases the

choice D--0 yiehls a wdue for Y that is nearly

equal to tile first and third y. The choice D=2

yiehts a wdue equal to the second y. The choice

D= 1 yields a value nearly half way between, and
since we are a,_sumiTdi thai the sequence of points

is _imilar to that shoxxm in figm'e 14 (i.e., converg-

ing although, perhaps, slowly), this clmice is

clearly preferable. It is si_fifieant that when

D=1, equation (40) is identical to the expression

used by several aulhors (a few of which are refer-

enced at the beginning of this section) to acceler'de

eonvergenee.7
Let us briefly consider lhe real wdue of equation

(40) for use in the iterative solution to equations

like those given by (lS). At once, it appears that

equation (40) c,m only be userul if tht'ee succes-

sive terms do actually contain informalion about

the wGlue they eventually approach; but in equa-

tion (18) each point in any iteration is linked in

a complex, nonlinear way with every olher point.

Heuce, a sequence of ileralive solutions for one

poin {,may have quit e valuable informalion regard-

ing their limit, whereas a companion sequence for
another point, may contain no informalion what-

soever. Three points that lie (to some numerical

degree of accuracy) on a straight, line, fog' example,
have no wdue in determining a bounded as)lap-

lore (provided one exists). For this reason equn-
lion (40) was not used to ewGluale fin the vicinity

(yl--Y',.)/(Ya--Ya) _ 1, the region where three sue-
cessive points approach a linear relationship. In

fact, the scheme finally chosen to accelerate con-

vergence was to use equation (40) with D 1 for

and

0.5 >yl-- yz > 1.5
Y_-- Ya

Y--ya____ 1 Yl--Y_ (41)
ye-- Ya Ya-- Ya

r It is interesting to not(: that Gsakson (n'f. t) d,,rives equation (40) for D=I

by titling to three successive points a e'ilrve that apprr),qehes its asymptote

exponent i:llly.

in the interwd between 0.5 and 1.5 (lhe latler

amounts to the slraighl dashed line shown in

figure 16).
In terms of the machine, lhis required a modi-

flea lion to the program oullined, above. At the

t)eginning of slep 12, DIrl and DU2 were stored

in two new arrays the first (or every odd) time

t,hrough. The second (or every even) time, DU2

w_'_s stored in a third array ani[a subroutine was
entered which ca]cuhGted a new DU1 on the basis

of equal ion (40) or (41). The machine wa_ then,

again, sent back to sic 1) 8.

RESULTS OF ACCELERATING CONVERGENCE

When the melhod presented in the preceding

section wa_ applied to the case l/L=.05, .\_=2,

e=0.9, and 0:120 °, the results for which, 1)3- llw

first medmd, are shown in figures 12, 13, aud 14,

the sequence of Em¢oR terms were those given in

figure 17 and _dso, fog' comparison, in figure 12.

"61 I I 2 .499569 --

I l 1 3 .,25426
I Y I 4 .135886

_q I I I 5 .014657
S .4_ [- _ 6 .004526 --

I I I 7 .001900
_ I I I e .00,607

I ! I 9 .ooo_70

.2 "_

0 2 4 6 8

Number of iterolions

FIGURE 17.--Varin'lion of error tgrm after aeeeleraled

convergence method had been applied to slowly con-

verging series.

The final wdues, after 10 iterations, are the dashed

curves in figures 13 anti 14. The success or the
method in this case is evident.

The second region of poor convergence, small
and small 0, wt_s not, signifie_mtly improved by the

above technique. Figure 18 shows the first three

iterations (after the initial choice of a eonslanl

eqmd in magnitude to the starting value), and the

fired distribution. The fil, t "improved" curve is

given by the dashed line and shows a discontinuity
between 0.82 and 0.84. It is at Ibis point that the
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nlactiine switehr.s fl'om equation (40) to (41). It

is ollr hypolhcsi.% therefore, thai Per _ less t|litl]

0.84, tile first tlu'ee iterations have lost lno_t of

1 o ,,;j
1 11 o i I/M

|/ /ll �ill
;[nol dlsfr ibut ion-./// L#_/M/

d_ .04 ---_ /L, ,.,j

l_ _" L f:/_Q2nd J
I02 _

__/_ '/ t fer3[oGn I

0 .2 .4 .6 .8 1.0

FiC, uRE lS. Illustration of three slowly converging ilora-

tions and "improved" d st rib it.io l obtained front them.

.10

.08

06

du

d_

.04

.02

Ii
Group of
[terotions

I
0 ,2 .4 .6 .8 1.0

FIGURE 19.--Successive "improved" iteralions resulting

from application of accelerating convergence technique

to slowly eonverging process.

their vahlo insoflu" as prr.dicling lhoir asymptote

iS conr.ornod. To sul)shuiiiate this> equldion (40)

was applied 1o oalcuhite points for lower _. Tim

rosull_ arc shown in figure 18 down to {=0.7 bv

the circled dots. Bdow 0.7 th|., values wore nega-

iiw,! For this r.a_o, al legist, the ]tytmlhosis is

r.on-0r.t.

In spite of the above difficulties, the nietllod was

r.onlinued it,lid the iterations converged (in lhe

sr.nse i]ili.t condition (39) was satisfir.d) in _20 steps.

For the same accuracy 21 slops were required by

the fiE'st niethod. Figurr. 19 shows liic first four

now Sllr.r.ossivo sets of l]lree iior_dions. The num-

ber of points containing significant infonmation

regnrding their liinit according lo l}ic lttmvo cri-

terion gr_uhlally increases, the dividing line moving

toward the origin like a wttvo with dill/inMfing

_mll)lil tlt[e.

xiknlos Resole'oh Celltel',

_-llAiona]. _4kt.,l'Ollil.lll it.'s and Spar'(, 7ttdlninistl'lltion,

h[offeti Fidd, Calif., 3fay la, 1961.
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